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M
aterials’ surfaces and surface
coatings are commonly exposed
to severe conditions that can

lead to the onset of local defects, such as

surface cracks. These defects limit the per-

formance of materials, notably affecting

properties such as light transmission, reflec-

tivity, mechanical stability, or electrical con-

ductivity. One common strategy for repair-

ing such damaged surfaces involves the

application of a new overcoat layer with op-

tical, mechanical, and electrical properties

that match the underlying substrate and

properly designed adhesive properties to

establish a strong interface with the sub-

strate. For precision fabricated materials,

the application of a new overcoat layer is

not optimal since the uniform finish and

controlled thickness of the original parts

can be sacrificed. Additionally, residual

stresses can often develop during curing

that limit the lifetime of the repaired part.

Therefore, the ability to selectively repair a

surface defect or crack is especially

attractive.

Previously, Balazs et al. modeled the roll-

ing motion of a fluid-driven, particle-filled

microcapsule along a heterogeneous, adhe-

sive substrate to determine how the re-

lease of the encapsulated nanoparticles

could be harnessed to repair damage on

the underlying surface.1 The simulations re-

vealed that these microcapsules can deliver

the encased materials to specific sites on

the substrate, effectively generating an al-

ternate route to repairing surface defects.

Once the healing nanoparticles were depos-

ited on the desired sites, the fluid-driven

capsules could move further along the sur-

face, and for this reason, the strategy was
termed “repair-and-go”. The latter strategy
could be particularly advantageous since it
would have negligible impact on the preci-
sion of the nondefective regions and in-
volves minimal amounts of the repair
materials.

Herein, we extend the prior two-
dimensional model1 to simulate the three-
dimensional interactions of deformable mi-
crocapsules with a substrate that contains a
3D crack. While the parameter space we
consider is relatively general, we nonethe-
less were inspired by particular, experimen-
tally realizable systems.2�7 Specifically, we
assumed that the surfaces of the microcap-
sules are amphiphilic in nature and, thus,
could have comparable interactions with
hydrophilic and hydrophobic domains.
Such microcapsules can be fabricated from
comb copolymers that encompass a hydro-
phobic backbone and hydrophilic side
chains.2 We further assume that the
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ABSTRACT Using a hybrid computational approach, we simulate the behavior of nanoparticle-filled

microcapsules that are propelled by an imposed shear to move over a substrate, which encompasses a microscopic

crack. When the microcapsules become localized in the crack, the nanoparticles can penetrate the capsule’s shell

to bind to and fill the damaged region. Initially focusing on a simple shear flow, we isolate conditions where the

microcapsules become arrested in the cracks and those where the capsules enter the cracks for a finite time but are

driven to leave this region by the imposed flow. We also characterize the particle deposition process for these

two scenarios, showing that the deposition is greater for the arrested capsules. We then determine the effect of

utilizing a pulsatile shear flow and show that this flow field can lead to an effective “repair-and-go” system where

the microcarriers not only deliver a high volume fraction of particles into the crack but also leave the fissure and,

thus, can potentially repair additional damage within the system.

KEYWORDS: computer simulation · microcapsules · nanoparticles ·
surfaces · cracks
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microcapsules encase an oil phase, which contains dis-
persed hydrophobic nanoparticles. Again, this aspect of
the model can be experimentally realized. In particular,
the encapsulated particles could be quantum dots that
were functionalized with hydrophobic ligands.3,4 Within
an oil/water mixture, the amphiphilic comb copoly-
mers can out-compete the functionalized quantum
dots for an oil-in-water droplet interface and, thus, pro-
vide an encapsulating shell for the coated nanoparti-
cles, which are dispersed in the interior oil phase.3,4

Upon cross-linking of the polymer shell, the copoly-
mers form a robust microcarrier for the nanoparticles,
with a very thin (�10 nm) wall3,4 through which the
nanoparticles can permeate under appropriate
conditions.

In the simulation, we assume that the hydrophilic
surface contains a crack, and the interior of this crack
is assumed to be hydrophobic. This substrate can be
fabricated from poly(dimethyl siloxane) (PDMS)-based
polymers with brittle surfaces. PDMS is hydrophobic,
but ultraviolet/ozone (UVO) treatment effectively con-
verts the surface of a PDMS film from hydrophobic to
hydrophilic, by production of a thin silica-like surface
layer (having a very low water contact angle).8 The sur-
face silica layer has a higher modulus than the underly-
ing PDMS.9 Subjecting such PDMS�silica composite
films to strain forces (either mechanical or osmotic) that
exceed the failure strain of the surface coating leads to
cracking at the surface. Osmotic strain (generated by
swelling the underlying PDMS in hexanes) results in for-
mation of random cracks on the PDMS surface; mechan-
ical stain (uniaxial extension) generates the aligned
cracks.10

With the above materials in mind, we simulate the
scenario shown in Figure 1, where hydrophobic nano-

particles are encapsulated in a fluid-filled microcap-
sule, which is localized on a substrate in an aqueous so-
lution. The intact portion of the surface is hydrophilic,
but this substrate also encompasses cracks, which ex-
pose the underlying hydrophobic domains (e.g., the un-
derlying PDMS). The amphiphilic nature of the capsule
allows this colloid to be solubilized in water and at-
tracted to both hydrophilic and hydrophobic portions
of the surface. On the other hand, the encapsulated hy-
drophobic nanoparticles are only attracted to the hy-
drophobic cracks.

In effect, the enthalpic interactions between the
nanoparticles and the hydrophobic crack provide a site-
specific response of these particles. As we show below,
when the capsule is localized in the crack, the nanopar-
ticles can tunnel through the microcapsule’s shell to
bind to and fill the cracked regions. Below, we also de-
termine the conditions for optimizing the performance
of this repair process. In particular, we find that the ap-
plication of a nonsteady, pulsatile flow field could be
useful in maximizing the deposition of particles into the
crack and sustaining the continued motion of micro-
capsules, therefore crucially increasing the effectiveness
of the autonomous healing of a damaged surface.

It is noteworthy that micrometer-sized capsules
filled with dissolved particles can encompass very high
payloads, allowing them to rapidly carry and deliver
large amounts of nanoparticles to a desired location.
Furthermore, the continued, flow-driven motion of
these microcarriers potentially allows multiple dam-
aged regions to be healed by the capsules.

To simulate this multicomponent system, which in-
volves complex fluid�structure interactions between
the solution and the capsule, as well as the diffusion of
nanoparticles, we take advantage of our recently devel-
oped hybrid “LBM/LSM” technique.11�16 In this ap-
proach, the dynamic behavior of the encapsulated and
external host fluids is captured through the lattice
Boltzmann model (LBM) for hydrodynamics. The cap-
sule’s shell and the underlying surface are modeled
through the lattice spring model (LSM) for the microme-
chanics of elastic solids. In this integrated LBM/LSM
method, the fluid and solid components interact
through appropriate boundary conditions at the
solid�fluid interface. We augment this LBM/LSM ap-
proach by introducing a Brownian dynamics
simulation1,17,18 to model the diffusion of the nanoparti-
cles within the system.

We note that these microcapsules effectively mimic
some of the functionality of biological leukocytes in
that they localize at damaged sites and facilitate the re-
pair process. As the introduction of a synthetic mi-
crovasculature19 into structural materials becomes
more developed, the use of such microcapsules as cel-
lular mimics could expand the efficiency of the artificial
circulatory systems. In addition to supplying healing re-
agents in the channels, it could be advantageous to en-

Figure 1. Graphical output from the simulation showing the
motion of a capsule on a damaged surface from its initial po-
sition (a) to the interior of the crack (b) and its re-emergence
onto the undamaged portion of the surface (c). For this case,
the capillary number Ca � 10�1 and dimensionless adhesion
strength � � 12. The gray shaded areas mark the substrate,
and the blue points correspond to the nanoparticles. Red ar-
rows indicate the direction of the imposed shear flow. (d)
Capsule arrested within the crack at Ca � 2 � 10�2 and � �
12.
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capsulate “damage markers” within the microcapsules.
The microcapsules could continue to circulate in a
“healthy”, undamaged system but become trapped or
localized at a damaged site and thereby deliver a
chemical “marker” (i.e., a visible or fluorescent dye)
through its porous shell. Such markers will enable one
to nondestructively locate and track the damaged re-
gions over time.

RESULTS AND DISCUSSION
Effect of Imposing a Steady Shear Flow. Using the model

described in the Methodology section, we determine
conditions that provide maximal deposition of nano-
particles into the surface crack and, thereby, produce ef-
fective repair of the substrate. We focus on a single cap-
sule that interacts with a bare crack to gain insight
into the initial steps involved in coating the surface
and to establish optimal conditions early in the deposi-
tion process. Additional fluid-driven capsules moving
along the surface are needed to continue the selective
delivery of the fillers into the damaged regions. Below
we also examine the interactions between a microcar-
rier and a partially filled fissure and then, finally, investi-
gate the behavior of a microcapsule on a surface con-
taining a nanoparticle-filled, “healed” domain.

The simulation box is Lx � Ly � Ly � 100 � 40 � 40
lattice Boltzmann units in size. Periodic boundary con-
ditions are applied in the x- and y-directions. A well-
defined crack is located in the center of the substrate
along the y-axes, with the crack tip being located at x
� 0 (see Figure 1). The capsule diameter is equal to
10�x, where �x is equal to the lattice spacing in the
LBM. The crack depth, dc, is equal to 5�x (i.e., compa-
rable to the capsule radius), and the crack width is equal
to 2dc.

The flat, upper wall of the simulation box is moved
with a constant velocity Uwall to create a uniform shear
rate of �̇ � Uwall/Lz. We characterize the flow by specify-
ing the dimensionless capillary number Ca � �̇�R/Eh,
where � is the fluid viscosity, R is the capsule radius, E
is the modulus of the shell, and h is the shell
thickness.12,13 The capillary number represents the rela-
tive importance of the viscous stress in the surrounding
fluid and the elastic stress in the capsule’s shell. In the
simulations, we vary Ca by altering �̇, keeping the val-
ues of the other relevant parameters fixed. In the ensu-
ing studies, we consider capillary numbers in the range
of 10�4 � Ca � 10�1, which are experimentally reason-
able values if we consider the microcapsules to be pro-
pelled by an imposed flow in an aqueous solution
whose viscosity is � � 10�3 kg/sm and density is 	 �

103 kg/m3. Typical velocities in microfluidic devices are
on the order of 1 cm/s, and typical channel heights are
hundreds of micrometers.20 For polymeric microcap-
sules with a diameter of 10 �m, the stiffness of the shell,
Eh, can be on the order of 10�3�1 N/m.21,22 From these
values, we obtain capillary numbers of Ca � 10�5�10�2,

which is approximately the range considered in these
simulations.

We also introduce a dimensionless interaction
strength12,13 
 � �N/Eh�2, where � and � characterize
the respective strength and range of the interaction po-
tential; here, N is the number of nodes on the cap-
sule’s outer surface. The parameter represents 
, the ra-
tio of the interaction strength to the membrane
stiffness. For 
  1, this interaction leads to signifi-
cant deformation of the capsule, while for 
 �� 1, the
effect on the capsule’s shape is small. Herein, we con-
sider 0 � 
 � 25, which also corresponds to experi-
mentally realistic values.13 (By expressing the data in
terms of such dimensionless numbers, we can provide
more flexible guidelines for potential experimental
studies. In the case of the capillary number and interac-
tion strength, the experimentalist is free to choose, for
instance, a combination of capsule sizes, Young’s
modulus, and shell thickness that will result in the speci-
fied ratio.)

We focus primarily on the case where the interac-
tion of the microcapsule with the undamaged horizon-
tal substrate and with the crack walls is characterized by
the same interaction constant �. As noted in the previ-
ous section, the surface of the microcapsule is assumed
to be amphiphilic, and thus, it can exhibit a compa-
rable interaction with both the intact hydrophilic sur-
face and the hydrophobic crack. We also investigate
one case where the capsule is less attracted to the hy-
drophobic than the hydrophilic region; we simulate this
case by setting the interaction strength within the crack
to half the value for the rest of the substrate. In all of
the simulations, we further assume that the deposited
hydrophobic nanoparticles do not modify the adhesive
properties of the crack walls. (The latter choice is not a
necessary constraint of the method: the nanoparticles
can dynamically modify the adhesive properties in the
simulation.1)

As shown in Figure 1a, the capsule is initially placed
on the undamaged, horizontal region of the surface
(with its center of mass positioned at x � �15) and in
the middle of the channel in the y-direction (at y � 20).
The capsule initially contains NNP(0) � 105 nanoparti-
cles. The particle-filled capsule is propelled toward the
crack by the imposed shear flow; the red arrow in Fig-
ure 1a shows the direction of the imposed shear. The
images in Figure 1b,c are for a capillary number of Ca
� 10�1 and adhesion strength of 
 � 12 and corre-
spond to points in time when the capsule is localized
in the crack (Figure 1b) and when it has been propelled
away from this region by the imposed flow (Figure 1c).
For the image in Figure 1d, the adhesion strength is
held fixed, but the shear rate is decreased to Ca � 2 �

10�2 and the figure shows that capsule has become ar-
rested in the crack as it moved along the surface.

Figure 2 shows the time dependence of the cap-
sule’s center-of-mass x-coordinate for 
 � 2.4 and for
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three shear rates, corresponding to Ca � 2 � 10�2, 6
� 10�2, and 1.2 � 10�1. Additionally, in Figure 3, we
plot a phase map for the system as a function of Ca
and 
 that indicates the response of the capsules to
the imposed flow and the attractive surface. To gener-
ate this phase map, we varied the dimensionless inter-
action strength from weak to strong adhesion, 3 � 10�2

� 
 � 24, and the shear rates, Ca, from 2.7 � 10�4 to
1.2 � 10�1. For each point, we averaged over three in-
dependent runs. In Figure 3a, the interaction strengths
of the amphiphilic microcapsule with the undamaged

(�u) and damaged (�d) regions of the substrate are

equal. These results reveal two general scenarios for

the capsule’s motion. For relatively high adhesion or

low shear rates (indicated by the solid diamonds in the

phase map), the capsule becomes arrested within the

crack (as shown in Figure 1d). For weaker adhesion and

higher shear rates (marked by the empty circles), the

capsule moves into the crack but then exits this region

to continue moving along the surface (as seen in Figure

1c). In rare events, after the capsule leaves the crack, it

bounds off the substrate due to lift forces that arise at

high shear rates.

In Figure 3b, the interaction parameters between

the capsule and the damaged and undamaged re-

gions have different values; here, �d � 1/2�u. (The lat-

ter values were chosen to illustrate the effect of having

�d � �u.) In other words, 
 for the capsule and the

crack is one-half of that for the capsule and undam-

aged substrate. For the unfilled triangles on the phase

map, the capsule is arrested in the crack for �d � �u but

becomes free when �d � 1/2�u. (To make these differ-

ences more visible, we plot the map on Figure 3b in a

linear scale.) It is clear from the plot that the microcap-

sule leaves the less adhesive crack at smaller shear rates.

Nonetheless, the overall character of the phase map

for the two cases remains unchanged.

To characterize the nanoparticle layer deposited by

the microcapsule onto the crack walls and, hence, quan-

tify the extent of the repair, we calculated Ndep(t), the to-

tal number of nanoparticles deposited by time t. Fig-

ure 4 shows the behavior of Ndep(t) as a function of time

for an arrested (Figure 4a) and a moving (Figure 4b)

capsule; here, the quantity is normalized to the total

number of nanoparticles initially encased in the micro-

capsule, NNP(0). For an arrested capsule, the ratio Ndep(t)/

NNP(0) approaches unity. The total number of depos-

ited nanoparticles provided by a moving capsule,

however, is smaller. For example, we obtain Ndep(t)/

NNP(0) � 0.08 for the case shown in Figure 4b.

To further characterize the performance of the mi-

crocarriers, we calculate NNP(t) � NNP(0) � Ndep(t), the

number of nanoparticles that remain within the cap-

sule as a function of time. In Figure 5a, we plot, NNP(t)

on a semilogarithmic scale for two different points

(
,Ca) within the “arrested” region of the phase map

in Figure 3. The parameter tin indicates the time when

the capsule becomes arrested in the crack, and hence,

the nanoparticles begin to be deposited in this region.

Figure 5a indicates that, at t  tin, the temporal depen-

dence of NNP(t) can be approximated by an exponen-

tially decaying function of the form

with a characteristic deposition time �dep. According to

eq 1, approximately (1 � e�1) � 100% � 63% of the

nanoparticles initially placed in the capsule are depos-

Figure 2. Center-of-mass coordinate xc of a capsule as a
function of time. The respective shear rates are labeled on
the plot. Open symbols are for moving capsules, and the
filled symbols are for the arrested capsule. The x-coordinates
of the crack boundaries are indicated by the solid horizon-
tal lines, and the x-coordinate of the crack tip is shown by a
dashed horizontal line. Damped oscillations of an arrested
capsule (green circles) in a crack (see Figure 1d) are clearly
seen at t  350.

Figure 3. (a) Numerically calculated phase map as a func-
tion of capillary number Ca and interaction strength �. The
unfilled circles indicate moving capsules, and the solid dia-
monds indicate arrested capsules. The interaction strengths
characterizing the intact surface and within the crack are the
same. (b) Phase map computed for the case where the inter-
action strength within the crack is equal to half the interac-
tion strength � for the rest of the substrate. Open triangles
shows the points on the map at which the microcapsule
changes its behavior from an arrested state (at plot a) to a
moving state when the interaction within the crack is
reduced.

NNP(t) ) NNP(0)exp[-(t - tin)/τdep] (1)
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ited into the crack during the time period �dep after the

capsule was arrested. An amount (1 � e�2) � 100% �

86% of nanoparticles are deposited after the time pe-

riod 2�dep and greater than 95% of nanoparticles are de-

posited after the time period 3�dep.

Figure 5b shows the dependence of the deposition

time �dep on the interaction strength 
 at two shear

rates for capsules that are arrested in the crack. The re-

sults are averaged over three independent runs. The

deposition time �dep is seen to decrease with an increase

in the interaction strength. The reason for this behav-

ior can be explained as follows. At moderate adhesion

(
 � 1), a spherical capsule arrested within the crack is

essentially undeformed and, therefore, has only a small

contact area with the crack walls. At higher adhesion

(
  1), the capsule is deformed by the attractive in-

teraction with the substrate and, thus, the contact area

and the average distance r between the shell and the

walls is decreased. Since the probability for nanoparti-

cles to be deposited onto the crack wall rises rapidly

with decreasing r (see eq 5), the deposition time �dep is

a decreasing function of the interaction strength. In

other words, a shorter time is required for achieving

higher coverage for strong adhesion strengths.

Figure 5b also indicates that the deposition time is

shorter for relatively larger shear rates. For Ca � 2 �

10�2, the fluid acts to deform the capsule12�16 and, thus,

again produces an increase in the contact area be-

tween the capsule and surface and a decrease in the

distance r.

We now turn our attention to the case of a nonar-

rested or “free” capsule, which leaves the crack and con-

tinues to move along the surface under the imposed

flow (the parameters are marked by the circles in Fig-

ure 3). For these cases, the number of deposited nano-

Figure 6. (a) Schematic indicating the time dependence of Ca (and
thus, �̇) for the imposed pulsatile shear flow. The t1, t2, and t3 are the
points in time when the shear rate is switched. A horizontal dashed
line shows the ordinate of the boundary between the regions in Fig-
ure 3a where the capsule is free (unfilled circles) and arrested (filled
diamonds) for a given value of interaction strength �. The capillary
number Ca1 belongs to an arrested state, and the capillary number
Ca2 belongs to a moving state of the capsule. (b) Motion of the cap-
sule computed for t1 � 0, t2 � 1500, t3 � 2500, � � 2.4, Ca1 � 2 �
10�2, and Ca2 � 6 � 10�2. Left frame: initial position of the capsule.
Middle: capsule arrested within the crack during the low-shear pe-
riod, t1 � t � t2. Right: capsule leaves the crack at t  t2. The length
of the red arrow is proportional to the applied shear rate.

Figure 4. Time dependence of Ndep(t), the number of nano-
particles deposited on the crack surface. The number is nor-
malized to the initial number of nanoparticles in the cap-
sule NNP(0). (a) Solid symbols indicate arrested capsules. (b)
Unfilled symbols indicate moving capsules. Respective val-
ues of Ca and � are marked on the plot.

Figure 5. (a) Number of nanoparticles within an arrested
capsule normalized to its initial value, NNP(t)/NNP(0), plotted
as a function of time on a semilogarithmic scale. The capil-
lary number is Ca � 4 � 10�3. Dashed line shows an expo-
nential dependence NNP(t) � exp(�t/�dep) with a characteris-
tic deposition time �dep. (b) Dependence of the deposition
time �dep on the dimensionless interaction strength � plot-
ted for Ca � 4 � 10�3 and 2 � 10�2. Straight lines are plot-
ted as a guide for the eye.
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particles, Ndep, is relatively small (see Figure 4) as com-

pared to the number obtained with an arrested capsule.

The reasons for the observed decrease in the effective-

ness of these moving capsules are two-fold. First, the

average distance r between the capsule shell and the

crack walls is large in comparison with the characteris-

tic distance � for nanoparticle deposition. In particular,

r/� � dc/� � 5 for a capsule moving over the crack. Sec-

ond, the time during which the capsule moves over

the crack (�50 simulation time steps according to Fig-

ure 2) and the nanoparticles can be deposited into this

region is short compared with the deposition time �dep

� 300. As a result, it is more difficult to obtain full cov-

erage in the case of a free capsule.

To summarize, we find that full surface coverage by

the nanoparticles can be more readily attained in the

case of an arrested capsule, that is, in a “repair” rather

than a “repair-and-go” system. In the next section, how-

ever, we demonstrate that a pulsatile fluid flow can

lead to an effective repair-and-go scenario where the

microcarriers not only deliver a high volume fraction of

particles into the crack but also leave the crack and,

thus, could potentially contribute to repairing addi-

tional cracks within the system with the remaining en-

capsulated particles.

Utility of Applying a Pulsatile Flow. In the following simu-

lations, we apply a pulsatile shear where the value of

the shear rate �̇(t) (and, hence, the capillary number

Ca(t)) depends on time in the manner shown in Figure

6a. In effect, we use the information from the previous

section to tailor the motility of the capsule. Specifically,

for a fixed 
, we choose a low capillary number Ca1

from the region in the phase map where the capsule is

arrested within the crack. After a time interval �t, we

then increase the shear rate to Ca2 so that, for the spe-

cific 
, the capsule is in the free region of phase space.

(We note that the capsule can move along the undam-

aged portion of the surface for both Ca1 and Ca2.) In the

time interval t1 � t � t2 during which the low shear cor-

responding to Ca � Ca1 is applied, the capsule can be-

come arrested in a nearby crack, and if this time inter-

val is sufficiently long, the microcarrier can deposit a

high density of nanoparticles along the walls of the

crack (see below). At t � t2, we increase the shear rate

to Ca � Ca2; in other words, we move vertically up in

the (
,Ca) phase map. The simulations show that, at

some time t � tout  t2, the capsule leaves the crack due

to the strong drag force from the surrounding fluid

and moves further along the surface.

Figure 6b shows this behavior for two parameter

sets, Ca1 � 2 � 10�2, Ca2 � 6 � 10�2 for an adhesion

strength of 
 � 2.4 (the case of moderate adhesion),

and Ca1 � 6 � 10�2, Ca2 � 1.2 � 10�1 for an adhesion

strength of 
 � 12 (strong adhesion). The inset in Fig-

ure 7 shows the variations with time of the center-of-

mass x-coordinate of the capsule calculated for the

two parameter sets. The capsule is arrested within the

crack at a time t � tin � 100 and leaves the crack at t �

tout � 1500�2000 in both cases. The main plot in Fig-

ure 7 shows the time dependence of the coverage com-

puted for the two parameter sets. As can be seen, a

nearly full deposition Ndep/NNP(0) (73% for moderate ad-

hesion and 90% for strong adhesion) is obtained for a

pulsatile flow. The latter values are significantly above

the typical values of Ndep/NNP(0) (�10�20%) obtained

Figure 7. Time dependence of the nanoparticle coverage
calculated for the pulsatile shear shown for two different val-
ues of the interaction strength. Inset shows the time depen-
dence of the center-of-mass x-coordinate of the capsule cal-
culated for the same parameter set as in the main plot. The
colors of symbols in the inset match the colors in the main
plot. Arrows mark the moments of time when the capsule
was arrested in (tin) and exits the crack (tout) for � � 2.4 (blue
symbols). In the simulations, we take t1 � 0, t2 � 1500, t3 �
2500.

Figure 8. (a�c) Motion of the microcapsule along the surface
with a crack completely filled with nanoparticles. (d) Time de-
pendence of the center-of-mass coordinate xc of a capsule com-
puted for � � 1.2 and Ca � 2 � 10�2 and 4 � 10�3.
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for a permanently moving or free capsule in a steady
flow.

As indicated in Figure 7, the advantage of using the
pulsatile shear is that we can combine high adhesion
strength 
, which provides nearly full nanoparticle cov-
erage of the crack, with the possibility for a capsule to
remain moving along the surface, therefore realizing
the basic ideas of a repair-and-go system. Additionally,
by applying a pulsatile flow, we can control the effective
exposure time texp � tout � tin � t2 � t1 (see Figure 6a);
that is, the exposure time can be set manually and inde-
pendently and can be varied over wide limits. (In the
repair-and-go system with a pulsatile shear, the expo-
sure time texp is defined by the duration of the low shear
portion t2 � t1.) Furthermore, we can exploit the attrac-
tive features offered by the case of relatively high adhe-
sion strength; namely, the higher 
 affords a more de-
formable capsule, which in turn contributes to an
increased healing rate (see Figure 5b).

Microcapsule Motion on a Nanoparticle-Filled Domain. In the
later stages of healing, the crack is essentially filled with
nanoparticles. Figure 8a�c demonstrates the motion
of a microcapsule on a surface where the crack is com-
pletely filled with nanoparticles. Here, we set 
 � 1.2
and Ca � 4 � 10�3; for these parameters, the microcap-
sule is arrested within the empty crack (Figure 3). It is
seen, however, that, in the case of a filled crack, the mi-
crocapsule passes over the crack without being ar-
rested. Figure 8d shows the capsule’s center-of-mass
coordinate as a function of time for the adhesion
strength 
 � 1.2 and for capillary numbers Ca � 4 �

10�3 and Ca � 2 � 10�2 (i.e., for points that lie within
the different regions of the phase map in Figure 3) cal-
culated for a completely filled crack. It is clearly seen
that in both cases the microcapsule moves freely along
the surface under the action of an imposed shear flow.

CONCLUSIONS
The above studies were inspired by the functional-

ity of leukocytes that respond to damage within the
body by localizing at the affected areas and initiating
the repair process. Leukocytes encase a host of biologi-
cal machinery that enables these cells to sense the loca-
tion of the wound and, subsequently, promote the cas-
cade of dynamic events that lead to wound healing. Our
aim, in essence, was to design an artificial leukocyte
that could affect the repair of a synthetic wound,
namely, a crack in a surface. A significant challenge is
designing a system that can accomplish this goal with-
out considerable human intervention or any of the bio-

logical machinery inherent to the cells. We are then

constrained or guided by the type of experimental sys-

tems that could be synthesized for these purposes. The

ability to fabricate amphiphilic capsules that encapsu-

late hydrophobic nanoparticles and surfaces that en-

case hydrophobic cracks allowed us to formulate a de-

livery system that could be transported by an imposed

flow in an aqueous solution and specifically target the

nanoparticles to the hydrophobic domains.

With the above experimental systems providing the

conceptual inspiration for our studies, we used a hy-

brid computational model to simulate the fluid-driven

motion of a compliant microcapsule on a cracked sur-

face. These capsules encase nanoparticles, which act as

the healing agents by essentially filling the fissures

and, thereby, re-establishing the continuity or struc-

tural integrity of the substrate. We found that there is

a range of capsule�surface interaction parameters and

shear rates that maximize the deposition of the nano-

particles into the cracks. For this range of parameters,

however, the capsule becomes arrested in the crack.

Our ultimate goal is to design a system where the

nanoparticle-filled capsule would not only aid in the re-

pair of one site but also travel on to heal other cracks.

To this end, we introduced a pulsatile shear flow that in-

volves alternating low and high shear rates. In the low

shear rate phase, the pulsatile flow enables the capsule

to be localized within a crack for a time �t. With an in-

crease in the shear rate, however, this capsule is pro-

pelled to leave the fissure and, thus, be available to

carry out further healing of the damaged substrate.

Hence, by utilizing the pulsatile flow field, we could

achieve the desired repair-and-go functionality in our

simulations. (An attractive feature of this system is that

the user can tailor the flow profile in order to control the

value of �t.)

We note that, in the above studies, we focused

on the action of a single microcapsule, allowing us

to isolate the factors that control the dynamic be-

havior of this microcarrier. In the actual physical sys-

tem, which involves a solution of microcapsules

moving in a microchannel, there is a high volume

fraction of microcarriers available to repair the sur-

face, and thus, the cracks could potentially be com-

pletely filled by deposited nanoparticles. As we

showed in the final section of this paper, for the cho-

sen interaction parameters, the amphiphilic cap-

sules would then move over these repaired areas

and go onto other locations where they are needed.

METHODOLOGY
To capture the fluid�structure interactions between the

flowing fluid and the surface of the compliant capsule, we used
our recently developed hybrid approach,1,11�16 which integrates
the lattice Boltzmann model (LBM) for the fluid dynamics and the

lattice spring model (LSM) for the micromechanics of an elastic
solid. Herein, we use this approach to simulate a three-
dimensional capsule that is driven by an imposed flow to move
on a rigid substrate, which contains a well-defined crack. The
capsule contains a solution of dispersed nanoparticles.
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The capsule’s elastic, solid shell is represented by a lattice
spring model, which consists of a triangular network of har-
monic springs that connect regularly spaced mass points, or
nodes.14�16 The spring force Fs on node ri is equal to

where the summation runs over all nearest- and next-nearest-
neighbor nodes. The quantity rij � ri � rj is the radius vector be-
tween ith and jth nodes, rij

eq is the equilibrium length of the
spring, and kj is the spring constant. To capture the dynamics of
the solid shell, we numerically integrate Newton’s equations of
motion, M(d2ri/dt2) � F(ri), where M is the mass of a node. The to-
tal force F acting on a node consists of the following: the sum
of the spring forces between the masses (representing the elas-
tic response of the solid shell), the force exerted by the fluid on
the shell at the fluid�solid boundary, and the adhesion forces at
the solid substrate (see below).

The capsule’s spherical shell is formed from two concentric
layers of LSM nodes; each layer contains N � 122 nodes. These
two layers are separated by a distance of �xLSM � 1.5�x, where
�xLSM is the lattice spacing between nearest nodes in the LSM
and �x is the spacing in the LBM (see below). The outer radius
of the shell was taken to be R � 5�x. For small deformations, the
LSM system obeys linear elasticity theory and results in a Young’s
modulus of E � 5kj/2�xLSM.24,25

The LBM can be viewed as an efficient solver for the
Navier�Stokes equation.23 More specifically, this lattice-based
model consists of two processes: the propagation of fluid “par-
ticles” to neighboring lattice sites, and the subsequent collisions
between particles when they reach a site. Here, the fluid par-
ticles are representative of mesoscopic portions of the fluid and
are described by a particle distribution function fi(r,t), which char-
acterizes the mass density of fluid particles at a lattice node r
and time t propagating in the direction i with a constant veloc-
ity ci. (The velocities ci in ith direction are chosen so that fluid par-
ticles propagate from one lattice site to the next in exactly one
time step �t.) The time evolution of these distribution functions
is governed by a discretized Boltzmann equation.23 In three-
dimensional systems, the simulations involve a set of 19 par-
ticle velocity distribution functions at each node. The hydrody-
namic quantities of interest are moments of the distribution
function, that is, the mass density 	 � �ifi, the momentum den-
sity j � 	u � �icifi, with u being the local fluid velocity, and the
momentum flux � � �icicifi.

In our LBM/LSM simulations, the fluid and solid phases inter-
act through appropriate boundary conditions.11�13 In particular,
lattice spring nodes that are situated at the solid�fluid interface
impose their velocities on the surrounding fluids; the velocities
are transmitted through a linked bounce-back rule26 to those
LBM distribution functions that intersect the moving solid
boundary. In turn, LS nodes at the solid�fluid interface experi-
ence forces due to the fluid pressure and viscous stresses at that
boundary. We calculate the latter force based on the momen-
tum exchange between the LBM particle and solid boundary and
then distribute this quantity as a load to the neighboring LS
nodes. We further assume no-slip boundary conditions at the
fluid�solid interface.

The interaction between the capsule and the surface (both
the undamaged region and crack wall) is modeled with a non-
specific Morse potential1,12,13

where � and � characterize the respective strength and range
of the interaction potential. Additionally, r is the distance be-
tween the LSM node and the substrate surface, and r0 is the dis-
tance at which this force is equal to zero. In all of our simula-
tions, we set � � 1 and r0 � 1, while � was varied to determine
the effect of the adhesion force on the microcapsule’s motion.

To capture the diffusion of nanoparticles within the encapsu-
lated fluid, we use a Brownian dynamics model for the
particles.1,17,27 The nanoparticles trajectories obey a stochastic
differential equation

where the first term describes the advection due to the local
fluid velocity u(r,t) and the second term describes the particle’s
Brownian motion, with D0 being the particle’s diffusion coeffi-
cient and dW(t) being the differential of a Weiner process with
unit variance. We neglect backflow effects (i.e., the impact of the
particles’ motion on the flow field); the latter assumption is valid
for submicrometer sized particles at relatively low concentra-
tions. We also neglect the interactions between the particles. We
use a first-order Euler scheme method to solve eq 4.17 Note that
an ensemble average of the particle trajectories computed from
eq 4 is equivalent to solving the convection�diffusion equation
for the concentration of nanoparticles.17,28,29

We simulate the chemisorption of nanoparticles onto the
crack walls by assigning a probability wdep for a nanoparticle to
deposit from the microcapsule’s interior onto the surface in a
given time step �t. (Note that the nanoparticles can only bind
to the surface when the microcapsule is localized in the crack.)
This probability has the form

Here r is the distance from the microcapsule’s shell to the crack
wall, rtun is a characteristic distance over which the probability
decays, and k is a characteristic deposition rate, which was set
to k � 1/�t in our simulations. We also set the characteristic tun-
neling distance rtun in eq 5 equal to the distance � in the Morse
potential (in eq 3). A “rejection” rule28,30 is applied to those nano-
particles that are not deposited onto the surface at a given time
step (i.e., with a probability (1 � wdep)); the variable �W is set
equal to zero for the “rejected” particles, and their positions are
then updated in accordance with eq 4.

The profile of the substrate�fluid interface is updated dy-
namically at each time step; the local elevation of the profile
due to the nanoparticle deposition is computed as h � (4�/
3)rnp

3 n, where n in the density of deposited nanoparticles at the
wall at a given point. The radius of the nanoparticles, rnp, is taken
to be 103 times smaller than the radius of the microcapsule.

Finally, we note that we have presented just one methodol-
ogy for healing materials. We refer the reader to refs 31�38 for
papers describing additional approaches of achieving materials
repair at the nano- and microscales.
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